# Description

Soil binders include a broad range of treatments that can be applied to exposed soils for temporary stabilization to reduce wind and water erosion. Soil binders may be applied alone or as tackifiers in conjunction with mulching and seeding applications.

Acknowledgement: This BMP Fact Sheet has been adapted from the 2003 California Stormwater Quality Association (CASQA) Stormwater BMP Handbook: Construction (<u>www.cabmphandbooks.com</u>).



Appropriate Uses

**Photograph SB-1.** Tackifier being applied to provide temporary soil stabilization. Photo courtesy of Douglas County.

Soil binders can be used for short-term, temporary stabilization of soils on both mild and steep slopes. Soil binders are often used in areas where work has temporarily stopped, but is expected to resume before revegetation can become established. Binders are also useful on stockpiled soils or where temporary or permanent seeding has occurred.

Prior to selecting a soil binder, check with the state and local jurisdiction to ensure that the chemicals used in the soil binders are allowed. The water quality impacts of some types of soil binders are relatively unknown and may not be allowed due to concerns about potential environmental impacts. Soil binders must be environmentally benign (non-toxic to plant and animal life), easy to apply, easy to maintain, economical, and should not stain paved or painted surfaces.

Soil binders should not be used in vehicle or pedestrian high traffic areas, due to loss in effectiveness under these conditions.

Site soil type will dictate appropriate soil binders to be used. Be aware that soil binders may not function effectively on silt or clay soils or highly compacted areas. Check manufacturer's recommendations for appropriateness with regard to soil conditions. Some binders may not be suitable for areas with existing vegetation.

# **Design and Installation**

Properties of common soil binders used for erosion control are provided in Table SB-1. Design and installation guidance below are provided for general reference. Follow the manufacturer's instructions for application rates and procedures.

| Soil Binders             |          |  |  |
|--------------------------|----------|--|--|
| Functions                |          |  |  |
| Erosion Control          | Yes      |  |  |
| Sediment Control         | No       |  |  |
| Site/Material Management | Moderate |  |  |

|                                           | Binder Type                              |                                         |                                              |                                              |  |  |
|-------------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------------|----------------------------------------------|--|--|
| Evaluation Criteria                       | Plant Material<br>Based<br>(short lived) | Plant Material<br>Based<br>(long lived) | Polymeric<br>Emulsion Blends                 | Cementitious-<br>Based Binders               |  |  |
| Resistance to Leaching                    | High                                     | High                                    | Low to Moderate                              | Moderate                                     |  |  |
| Resistance to Abrasion                    | Moderate                                 | Low                                     | Moderate to High                             | Moderate to High                             |  |  |
| Longevity                                 | Short to Medium                          | Medium                                  | Medium to Long                               | Medium                                       |  |  |
| Minimum Curing Time<br>before Rain        | 9 to 18 hours                            | 19 to 24 hours                          | 0 to 24 hours                                | 4 to 8 hours                                 |  |  |
| Compatibility with<br>Existing Vegetation | Good                                     | Poor                                    | Poor                                         | Poor                                         |  |  |
| Mode of Degradation                       | Biodegradable                            | Biodegradable                           | Photodegradable/<br>Chemically<br>Degradable | Photodegradable/<br>Chemically<br>Degradable |  |  |
| Specialized Application<br>Equipment      | Water Truck or<br>Hydraulic<br>Mulcher   | Water Truck or<br>Hydraulic<br>Mulcher  | Water Truck or<br>Hydraulic Mulcher          | Water Truck or<br>Hydraulic Mulcher          |  |  |
| Liquid/Powder                             | Powder                                   | Liquid                                  | Liquid/Powder                                | Powder                                       |  |  |
| Surface Crusting                          | Yes, but<br>dissolves on<br>rewetting    | Yes                                     | Yes, but dissolves on rewetting              | Yes                                          |  |  |
| Clean Up                                  | Water                                    | Water                                   | Water                                        | Water                                        |  |  |
| Erosion Control<br>Application Rate       | Varies                                   | Varies                                  | Varies                                       | 4,000 to 12,000<br>lbs/acre Typ.             |  |  |

Factors to consider when selecting a soil binder generally include:

- **Suitability to situation**: Consider where the soil binder will be applied, if it needs a high resistance to leaching or abrasion, and whether it needs to be compatible with existing vegetation. Determine the length of time soil stabilization will be needed, and if the soil binder will be placed in an area where it will degrade rapidly. In general, slope steepness is not a discriminating factor.
- Soil types and surface materials: Fines and moisture content are key properties of surface materials. Consider a soil binder's ability to penetrate, likelihood of leaching, and ability to form a surface crust on the surface materials.
- **Frequency of application**: The frequency of application can be affected by subgrade conditions, surface type, climate, and maintenance schedule. Frequent applications could lead to high costs. Application frequency may be minimized if the soil binder has good penetration, low evaporation, and good longevity. Consider also that frequent application will require frequent equipment clean up.

An overview of major categories of soil binders, corresponding to the types included in Table SB-1 follows.

## Plant-Material Based (Short Lived) Binders

• **Guar**: A non-toxic, biodegradable, natural galactomannan-based hydrocolloid treated with dispersant agents for easy field mixing. It should be mixed with water at the rate of 11 to 15 lbs per 1,000 gallons. Recommended minimum application rates are provided in Table SB-2.

| Table SB-2. | Application | <b>Rates for</b> | <b>Guar Soi</b> | l Stabilizer |
|-------------|-------------|------------------|-----------------|--------------|
|-------------|-------------|------------------|-----------------|--------------|

|                            | Slope (H:V) |     |     |     |     |
|----------------------------|-------------|-----|-----|-----|-----|
|                            | Flat        | 4:1 | 3:1 | 2:1 | 1:1 |
| Application Rate (lb/acre) | 40          | 45  | 50  | 60  | 70  |

- **Psyllium**: Composed of the finely ground muciloid coating of plantago seeds that is applied as a wet slurry to the surface of the soil. It dries to form a firm but rewettable membrane that binds soil particles together but permits germination and growth of seed. Psyllium requires 12 to 18 hours drying time. Application rates should be from 80 to 200 lbs/acre, with enough water in solution to allow for a uniform slurry flow.
- **Starch**: Non-ionic, cold-water soluble (pre-gelatinized) granular cornstarch. The material is mixed with water and applied at the rate of 150 lb/acre. Approximate drying time is 9 to 12 hours.

#### Plant-Material Based (Long Lived) Binders

- Pitch and Rosin Emulsion: Generally, a non-ionic pitch and rosin emulsion has a minimum solids content of 48 percent. The rosin should be a minimum of 26 percent of the total solids content. The soil stabilizer should be a non-corrosive, water dilutable emulsion that upon application cures to a water insoluble binding and cementing agent. For soil erosion control applications, the emulsion is diluted and should be applied as follows:
  - For clayey soil: 5 parts water to 1 part emulsion

• For sandy soil: 10 parts water to 1 part emulsion

Application can be by water truck or hydraulic seeder with the emulsion and product mixture applied at the rate specified by the manufacturer.

### **Polymeric Emulsion Blend Binders**

- Acrylic Copolymers and Polymers: Polymeric soil stabilizers should consist of a liquid or solid polymer or copolymer with an acrylic base that contains a minimum of 55 percent solids. The polymeric compound should be handled and mixed in a manner that will not cause foaming or should contain an anti-foaming agent. The polymeric emulsion should not exceed its shelf life or expiration date; manufacturers should provide the expiration date. Polymeric soil stabilizer should be readily miscible in water, non-injurious to seed or animal life, non-flammable, should provide surface soil stabilization for various soil types without inhibiting water infiltration, and should not re-emulsify when cured. The applied compound should air cure within a maximum of 36 to 48 hours. Liquid copolymer should be diluted at a rate of 10 parts water to 1 part polymer and the mixture applied to soil at a rate of 1,175 gallons/acre.
- Liquid Polymers of Methacrylates and Acrylates: This material consists of a tackifier/sealer that is a liquid polymer of methacrylates and acrylates. It is an aqueous 100 percent acrylic emulsion blend of 40 percent solids by volume that is free from styrene, acetate, vinyl, ethoxylated surfactants or silicates. For soil stabilization applications, it is diluted with water in accordance with manufacturer's recommendations, and applied with a hydraulic seeder at the rate of 20 gallons/acre. Drying time is 12 to 18 hours after application.
- **Copolymers of Sodium Acrylates and Acrylamides**: These materials are non-toxic, dry powders that are copolymers of sodium acrylate and acrylamide. They are mixed with water and applied to the soil surface for erosion control at rates that are determined by slope gradient, as summarized in Table SB-3.

|                            | Slope (H:V) |            |            |  |
|----------------------------|-------------|------------|------------|--|
|                            | Flat to 5:1 | 5:1 to 3:1 | 2:2 to 1:1 |  |
| Application Rate (lb/acre) | 3.0-5.0     | 5.0-10.0   | 10.0-20.0  |  |

#### Table SB-3. Application Rates for Copolymers of Sodium Acrylates and Acrylamides

- **Polyacrylamide and Copolymer of Acrylamide**: Linear copolymer polyacrylamide is packaged as a dry flowable solid. When used as a stand-alone stabilizer, it is diluted at a rate of 11 lb/1,000 gal. of water and applied at the rate of 5.0 lb/acre.
- **Hydrocolloid Polymers**: Hydrocolloid Polymers are various combinations of dry flowable polyacrylamides, copolymers, and hydrocolloid polymers that are mixed with water and applied to the soil surface at rates of 55 to 60 lb/acre. Drying times are 0 to 4 hours.

### **Cementitious-Based Binders**

• **Gypsum**: This formulated gypsum based product readily mixes with water and mulch to form a thin protective crust on the soil surface. It is composed of high purity gypsum that is ground, calcined and processed into calcium sulfate hemihydrate with a minimum purity of 86 percent. It is mixed in a hydraulic seeder and applied at rates 4,000 to 12,000 lb/acre. Drying time is 4 to 8 hours.

### Installation

After selecting an appropriate soil binder, the untreated soil surface must be prepared before applying the soil binder. The untreated soil surface must contain sufficient moisture to assist the agent in achieving uniform distribution. In general, the following steps should be followed:

- Follow manufacturer's written recommendations for application rates, pre-wetting of application area, and cleaning of equipment after use.
- Prior to application, roughen embankment and fill areas.
- Consider the drying time for the selected soil binder and apply with sufficient time before anticipated rainfall. Soil binders should not be applied during or immediately before rainfall.
- Avoid over spray onto roads, sidewalks, drainage channels, sound walls, existing vegetation, etc.
- Soil binders should not be applied to frozen soil, areas with standing water, under freezing or rainy conditions, or when the temperature is below 40°F during the curing period.
- More than one treatment is often necessary, although the second treatment may be diluted or have a lower application rate.
- Generally, soil binders require a minimum curing time of 24 hours before they are fully effective. Refer to manufacturer's instructions for specific cure time.
- For liquid agents:
  - Crown or slope ground to avoid ponding.
  - $\circ$  Uniformly pre-wet ground at 0.03 to 0.3 gal/yd<sup>2</sup> or according to manufacturer's recommendations.
  - Apply solution under pressure. Overlap solution 6 to 12 in.
  - Allow treated area to cure for the time recommended by the manufacturer, typically at least 24 hours.
  - Apply second treatment before first treatment becomes ineffective, using 50 percent application rate.
  - $\circ$  In low humidity, reactivate chemicals by re-wetting with water at 0.1 to 0.2 gal/yd<sup>2</sup>.

# **Maintenance and Removal**

Soil binders tend to break down due to natural weathering. Weathering rates depend on a variety of sitespecific and product characteristics. Consult the manufacturer for recommended reapplication rates and reapply the selected soil binder as needed to maintain effectiveness.

Soil binders can fail after heavy rainfall events and may require reapplication. In particular, soil binders will generally experience spot failures during heavy rainfall events. If runoff penetrates the soil at the top of a slope treated with a soil binder, it is likely that the runoff will undercut the stabilized soil layer and discharge at a point further down slope.

Areas where erosion is evident should be repaired and soil binder or other stabilization reapplied, as needed. Care should be exercised to minimize the damage to protected areas while making repairs.

Most binders biodegrade after exposure to sun, oxidation, heat and biological organisms; therefore, removal of the soil binder is not typically required.